3 resultados para CAFFEINE

em WestminsterResearch - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caffeine users have been encouraged to consume caffeine regularly to maintain their caffeine tolerance and so avoid caffeine’s acute pressor effects. In controlled conditions complete caffeine tolerance to intervention doses of 250 mg develops rapidly following several days of caffeine ingestion, nevertheless, complete tolerance is not evident for lower intervention doses. Similarly complete caffeine tolerance to 250 mg intervention doses has been demonstrated in habitual coffee and tea drinkers’ but for lower intervention doses complete tolerance is not evident. This study investigated a group of habitual caffeine users following their self-determined consumption pattern involving two to six servings daily. Cardiovascular responses following the ingestion of low to moderate amounts caffeine (67, 133 and 200 mg) were compared with placebo in a double-blind, randomised design without caffeine abstinence. Pre-intervention and post-intervention (30 and 60 min) 90 s continuous cardiovascular recordings were obtained with the Finometer in both the supine and upright postures. Participants were 12 healthy habitual coffee and tea drinkers (10 female, mean age 36). Doses of 67 and 133 mg increased systolic pressure in both postures while in the upright posture diastolic pressure and aortic impedance increased while arterial compliance decreased. These vascular changes were larger upright than supine for 133 mg caffeine. Additionally 67 mg caffeine increased dp/dt and indexed peripheral resistance in the upright posture. For 200 mg caffeine there was complete caffeine tolerance. Cardiovascular responses to caffeine appear to be associated with the size of the intervention dose. Habitual tea and coffee drinking does not generate complete tolerance to caffeine as has been previously suggested. Both the type and the extent of caffeine induced cardiovascular changes were influenced by posture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immediate and short-term chemosensory impacts of coffee and caffeine on cardiovascular activity. Introduction: Caffeine is detected by 5 of the 25 gustatory bitter taste receptors (hTAS2Rs) as well as by intestinal STC-1 cell lines. Thus there is a possibility that caffeine may elicit reflex autonomic responses via chemosensory stimulation. Methods: The cardiovascular impacts of double-espresso coffee, regular (130 mg caffeine) and decaffeinated, and encapsulated caffeine (134 mg) were compared with a placebocontrol capsule. Measures of four post-ingestion phases were extracted from a continuous recording of cardiovascular parameters and contrasted with pre-ingestion measures. Participants (12 women) were seated in all but the last phase when they were standing. Results: Both coffees increased heart rate immediately after ingestion by decreasing both the diastolic interval and ejection time. The increases in heart rate following the ingestion of regular coffee extended for 30 min. Encapsulated caffeine decreased arterial compliance and increased diastolic pressure when present in the gut and later in the standing posture. Discussion: These divergent findings indicate that during ingestion the caffeine in coffee can elicit autonomic arousal via the chemosensory stimulation of the gustatory receptors which extends for at least 30 min. In contrast, encapsulated caffeine can stimulate gastrointestinal receptors and elicit vascular responses involving digestion. Conclusion: Research findings on caffeine are not directly applicable to coffee and vice versa. The increase of heart rate resulting from coffee drinking is a plausible pharmacological explanation for the observation that coffee increases risk for coronary heart disease in the hour after ingestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioscience subjects require a significant amount of training in laboratory techniques to produce highly skilled science graduates. Many techniques which are currently used in diagnostic, research and industrial laboratories require expensive equipment for single users; examples of which include next generation sequencing, quantitative PCR, mass spectrometry and other analytical techniques. The cost of the machines, reagents and limited access frequently preclude undergraduate students from using such cutting edge techniques. In addition to cost and availability, the time taken for analytical runs on equipment such as High Performance Liquid Chromatography (HPLC) does not necessarily fit with the limitations of timetabling. Understanding the theory underlying these techniques without the accompanying practical classes can be unexciting for students. One alternative from wet laboratory provision is to use virtual simulations of such practical which enable students to see the machines and interact with them to generate data. The Faculty of Science and Technology at the University of Westminster has provided all second and third year undergraduate students with iPads so that these students all have access to a mobile device to assist with learning. We have purchased licences from Labster to access a range of virtual laboratory simulations. These virtual laboratories are fully equipped and require student responses to multiple answer questions in order to progress through the experiment. In a pilot study to look at the feasibility of the Labster virtual laboratory simulations with the iPad devices; second year Biological Science students (n=36) worked through the Labster HPLC simulation on iPads. The virtual HPLC simulation enabled students to optimise the conditions for the separation of drugs. Answers to Multiple choice questions were necessary to progress through the simulation, these focussed on the underlying principles of the HPLC technique. Following the virtual laboratory simulation students went to a real HPLC in the analytical suite in order to separate of asprin, caffeine and paracetamol. In a survey 100% of students (n=36) in this cohort agreed that the Labster virtual simulation had helped them to understand HPLC. In free text responses one student commented that "The terminology is very clear and I enjoyed using Labster very much”. One member of staff commented that “there was a very good knowledge interaction with the virtual practical”.